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Introduction

I Maharam’s problem (1947):

I Is every Maharam algebra a measure algebra?
I Does every exhaustive additive vector measure admit a control measure [the

control measure problem]?
I Does every exhaustive submeasure fail to be pathological?
I Is every exhaustive submeasure uniformly exhaustive?
I Is every exhaustive submeasure equivalent to a measure?

I In 2006 M. Talagrand constructed a ZFC counter example to Maharam’s
problem.

I This solution is very uncooperative!
I Does the corresponding non-measurable Maharam algebra contain the

random algebra as a complete subalgebra (i.e. does it add a random real)?
I Can we eliminate AC from the construction (i.e. eliminate the use of an

ultrafilter)?
I Is this complete Boolean algebra homogenous?
I Can we generalise this construction to clopen(2κ)?

I What else can we say about the relationship between submeasures and
measures (keeping the Maharam problem in mind)?

I I will discuss a linear association between the collection of all submeasures
on the clopen sets of the Cantor space and the space of signed measures
on this algebra.
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Some definitions

Throughout B will always denote a Boolean algebra.

A map λ : B→ R is
called a ... :

I signed measure if, for every disjoint a and b from B, we have
λ(a ∪ b) = λ(a) + λ(b);

I measure if it is a signed measure but only assumes non-negative values
from R;

I submeasure if the following conditions hold:
I λ(0) = 0,
I λ(a) ≤ λ(b), for every a and b such that a ≤ b,
I λ(a ∪ b) ≤ λ(a) + λ(b), always.

These are all examples of functionals, which is to say that each satisfies
λ(0) = 0.
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Some definitions

Two functionals µ and λ on B are called equivalent if, for every sequence
(an)n from B, we have

lim
n
µ(an) = 0↔ lim

n
λ(an) = 0.

A functional λ on B is called exhaustive if, for every antichain (an)n from B,
we have

lim
n
λ(an) = 0.

Maharam’s problem: Is every exhaustive submeasure on the clopen sets of
the Cantor space equivalent to a measure?
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Submeasures and signed measures

Definition
Call a collection {ai : i ∈ [n]} ⊆ B, ∗-free if for every non-empty J ⊆ [n] we
have ⋂

j∈J

aj

 ∩
⋂

j 6∈J

ac
j

 6= 0 ∧
⋃
i∈[n]

ai = 1.

Remark: Recall that the collection {ai : i ∈ [n]} is free if for every J ⊆ [n] we
have ⋂

j∈J

aj

 ∩
⋂

j 6∈J

ac
j

 6= 0,

in which case, by considering J = ∅, we would have
⋃

i∈[n] ai 6= 1.
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Submeasures and signed measures

Theorem
For every countable Boolean algebra A there exists a countable Boolean
algebra B and an injective map f : A→ B with the following properties:

(T.1) B = 〈f[A]〉;
(T.2) if A′ ⊆ A is a finite subalgebra, then the collection f[atoms(A′)] is ∗-free

in B;

(T.3) (∀a, b ∈ A)(f(a ∪ b) = f(a) ∪ f(b)).

Moreover, if D is a Boolean algebra and g : A→ D satisfies the above, then for
any functional µ on A, there exists a unique signed measure λ on D such that
µ(a) = λ(g(a)), for each a ∈ A.
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The basic idea

f7−→ λ(c) = 1
4 λ(d) =

1
2 λ(e) = 1

4µ(a) = 3
4 µ(b) = 3

4

Let A be the finite Boolean algebra of two atoms a and b and define the
functional µ : A→ R by:

µ(a) = µ(b) =
3

4
and µ(a ∪ b) = 1.

I This is not additive, since a and b cannot assume these values and be
disjoint at the same time ( 3

4
+ 3

4
6= 1...!).

I If we want it to be additive and maintain these values, we will need a and
b to intersect.

I So we arrive at the Boolean algebra B of three atoms c, d and e and the
measure λ : B→ R defined by

λ(c) = λ(e) =
1

4
and λ(d) =

1

2
.
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The basic idea
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4µ(a) = 3
4 µ(b) = 3

4

We are in fact solving the following system of linear equations:

I µ(a ∪ b) = λ(c) + λ(d) + λ(e);

I µ(a) = λ(c) + λ(d);

I µ(b) = λ(d) + λ(e).

By constructing an appropriate matrix and showing that it is invertible, we see
that in general this can be done for any finite Boolean algebra.

The final construction is obtained as a direct limit of these finite constructions.
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Explicit construction

We can construct this map (almost) explicitly.

I Let X1,X2, ... be a sequence of finite non-empty sets, let X (n) =
∏

i∈[n] Xi

and X =
∏

i∈N Xi .

I Our A will be the clopen sets of X .

I Define another sequence of finite non-empty sets T1,T2, ... as follows.

I Let T1 = P(X1)+ and

Ti+1 = {A ⊆ X (i+1) : every member of X (i) has an extension in A}.

I Our B will be the clopen sets of T :=
∏

i∈N Ti and let T (n) =
∏

i∈[n] Ti .

I Say that s ∈ X (n) generates t ∈ T (n) if

(∀i ∈ [n])(s � [i ] ∈ t(i)).

I Now define f by

f([s]) =
⋃
{[t] : s generates t}.
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Explicit construction

By induction we see that: Every t ∈ T (n) will be generated by some s ∈ X (n):

I Assume it is true for n and let f ∈ T (n+1). Since we can find a s ∈ X (n)

that generates f � [n], and f (n + 1) contains an extension of s, we are
done.

For every A ⊆ X (n), there exists a t ∈ T (n) which is generated precisely by
the members of A:

I Assume true for n and let A ⊆ X (n+1).

I Let B = {s � [n] : s ∈ A}.
I Let g ∈ T (n) be generated by precisely the members of B.

I Fix and x ∈ Xn+1 and let f = g_(A ∪ {s_x : s ∈ X (n) \ B}).

I f ∈ T (n+1).

I If t 6∈ A and generates f , then t = s_x for some s 6∈ B and s generates g ,
which is a contradiction.

From this we see that f is injective and satisfies properties (T.2) and (T.3) of
Theorem.

Note that as it is defined, (T.1) fails (the image of this map does not generate
B). But just consider the algebra generated by this image.
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Lebesgue measure on clopen(T )

Let λ be the Lebesgue measure on B.

The map µ on A defined by

(∀a ∈ A)(µ(a) = λ(f(a)))

is a submeasure.

Calculating the values of µ reduces to counting sequences in the T (n).

It is not difficult to see that the subsets of X of the form

Ci,j = {f ∈ X : f (i) = j}

have µ-measure bounded away from 0.

In particular if supi |Xi | =∞ then µ will not be equivalent to a measure.

However, we cannot decide if µ is ever exhaustive.

Warning! If each Xi = {1, 2} then µ is not exhaustive.
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Remarks

Can this be useful?

Lemma
If µ is a submeasure and the corresponding signed measure is non-negative,
then µ must dominate a non-trivial measure (i.e. it cannot be pathological).

In particular the signed measure corresponding to Talagrand’s submeasure is
indeed non-negative.

On the other hand, there are very simple submeasures where the corresponding
signed measure is unbounded. For example take the submeasure

µ(a) =

{
1, if a = 1;
1
2
, otherwise.
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